

TD8: GEOMETRIE ET GRANDEURS 1_CORRECTION

REMARQUE: il vous est proposé dans ce corrigé une correction (il en existe d'autres!)

Propriétés utilisées pour les exercices :

P1: Dans un triangle, la somme des angles est égale à 180°

P2 : Dans un triangle isocèle, les angles à la base ont la même mesure

P3 : Dans un triangle, la longueur d'un côté est inférieure à la somme des longueurs des deux autres côtés.

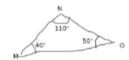
P4 : Deux angles symétriques par rapport à un point ont la même mesure d'angle.

P5: Deux segments symétriques par rapport à un point sont de même longueur.

P6: Deux droites parallèles à une troisième sont parallèles entre elles.

EXERCICE 1

a) Construire les triangles suivants.



Il s'agit de tracer un triangle :

- GHI rectangle en I connaisant La longueur de 2 cotés (équerre et compas)
- connaissant les mesures des trois angles or 40+60+110= 210.

Le triangle n'est pas constructible. (P1)

b) Construire un triangle PQR isocèle en Q tel que PR = 5 cm et \widehat{PQR} = 50°. Comme le triangle est isocèle en Q alors les angles à la base \widehat{P} et \widehat{R} mesurent 65° (P2 et P1)

Il s'agit de constrire un triangle connaissant la logueur d'un coté et la mesure des angles à ces extémités (regle et rapporteur)

c) Construire un triangle STU rectangle isocèle en S tel que la longueur de l'hypoténuse est de 5 cm.

Même procédure que b) en commencant par le tracé de la base (hypoténuse) [TU] (regle et rapporteur-vérification eventuelle de l'angle droit avec l'équerre)

d) Construire le triangle VWX tel que VW = 5 cm, WX = 2 cm, XV = 8 cm. Il s'agit de construire un triangle connaissant les longueurs des trois cotés or 8>5+7.Le triangle n'est pas constructible.(P3)

EXERCICE 2

Construire si possible un tringle ABC dans les cas suivants : justifier les cas de nonconstruction

a) AB = 4 cm, $\widehat{ABC} = 40^{\circ}$, $\widehat{BAC} = 60^{\circ}$

Tracer le segment [AB] puis les deux angles dont les sommets sont les extrémités du segment.

b) AB = 5 cm, $\widehat{ABC}=65^{\circ}$, $\widehat{BAC}=33^{\circ}$, $\widehat{ACB}=33^{\circ}$ Impossible (P1)

c) AB = 5 cm, $\widehat{ABC} = 120^{\circ}$, BC=3 cm

Tracer le segment [AB], puis l'angle \hat{B} et placer le point C. Le relier à A

EXERCICE 3

Construis les parallélogrammes ABCD, EFGH et IJKL de centre M respectant les conditions suivantes.

a) AB = 5 cm, AD = 3.5 cm et BD = 7 cm.

Il s'agit de construire le triangle ABD connaissant les trois longueurs des cotés puis de placer le quatrième sommet C par : symétrie centrale (C image de a par la symétrie le centre du parallélogramme) ou par tracés de parallèles (BC) // (AD) et (AB) // (DC)

b) EF = 2 cm, EH = 4.5 cm et EG = 3.5 cm.

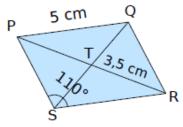
Même procédure que a) après avoir utilisé le fait que les cotés opposés ont la même longueur

c) IJ = 6 cm, JM = 5 cm et IM = 4 cm.

Il s'agit de construire le triangle IJM connaissant les trois longueurs des cotés puis de placer les autres sommets par symétrie de centre M

EXERCICE 4:

Source : Sésamath cycle 4 -2016 PQRS est un parallélogramme de centre T.



Quelle est la mesure du segment [TP] ? Justifier la réponse.

TP=3,5 cm la diagonale [PR] admet T comme milieu

Déterminer toutes les mesures de longueurs ou d'angles qu'il est possible de déterminer en justifiant le raisonnement et les éventuels calculs.

SR= 5cm cotés opposés de même mesure de longueur ;

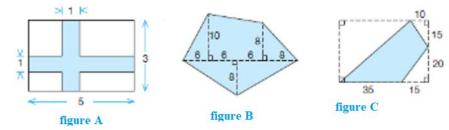
 $\widehat{PQR} = 110^{\circ}$ angles opposés de même mesure

 $\widehat{PQR} = \widehat{PQR} = \frac{360 - 2*110}{2} = 70^{\circ}$ somme des angles du parallélogramme égale à

360° et angles opposés de même mesure

EXERCICE 5

Calculer les aires des figures colorées.



Aire d'un rectangle= longueur*largeur Aire d'un triangle= (base*hauteur)/2

Aire d'un trapèze : ((petite base+grande base)*hauteur))/2

Figure A: 5*3-4*2

Figure B: (6*10)/2+((10+8)*(6+6))/2+(8*8)/2+((6+6+6+8)+8)/2

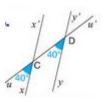
Figure C: ((35+15)*(20+15))/2-(35+15-10)*(20+15)/2+10*15/2-20-15/2

EXERCICE 6

Source: cahier Transmath 5^{ème}, Nathan, 2019

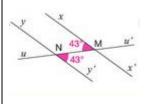
1. Pour chaque figure, les droites (xx') et (yy') sont-elles parallèles ? Justifier.

Figure A



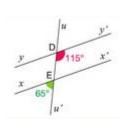
Les angles bleus sont des angles correspondants et de même mesure, donc les droites (xx') et (yy') sont parallèles

Figure B



Les angles roses sont des angles **alternes internes** et de même mesure, donc les droites (xx') et (yy') sont parallèles

Figure C



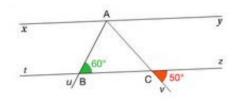
 $\widehat{yDE} = \widehat{yDy'} - \widehat{EDy'} = 180^{\circ} - 115^{\circ} = 65^{\circ}$ \widehat{yDE} et \widehat{xEu} sont sont des angles **alternes internes** et de même mesure, donc les droites (xx') et (yy') sont parallèles

2. <u>Données</u>:

(xy) // (tz);

 $A \in (xy)$

[Au) et [Av) coupent (tz) respectivement en B et C



Quelle est la mesure de chacun des angles \widehat{ACB} , \widehat{yAC} et \widehat{xAB} ? Justifier.

- $\widehat{ACB} = \widehat{yAC} = 50^{\circ}$ (Angles opposés par le sommet)
- $y\widehat{AC} = y\widehat{AC} = 50^{\circ}$ (Angles correspondants portes par des droites parallèles)
- $\widehat{xAB} = \widehat{tBv} = \widehat{ABC} = 60^{\circ}$ (Angles correspondants portes par deux droites parallèles et angles opposés par le sommet)

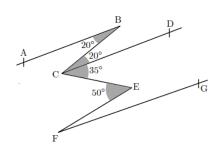
EXERCICE 7

On considère la figure suivante où les droites

(AB) et (FG) sont parallèles

1. Les droites (AB) et (CD) sont-elles parallèles ?

Deux angles ABC et BCD alternes internes de même mesure, donc (AB) parallèle à (CD)



2. Calculer la mesure de l'angle \widehat{EFG} .

AB) // (FG) et (AB) // (CD) donc (CD)//(FG) : **P6** (CE) coupe (FG) en Z.

 \widehat{FEZ} supplémentaire à \widehat{CEF} , donc \widehat{FEZ} =130°. \widehat{EZF} et \widehat{DCZ} sont des angles alternes internes portés par des droites parallèles donc \widehat{EZF} =35° D'après P1, dans le triangle EFZ : \widehat{EFZ} = \widehat{EFG} = 15°

EXERCICE 8:

On considère la figure codée suivante où les points J, E et I sont alignés.

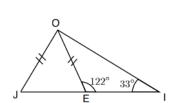
1) Calculer la mesure de l'angle \widehat{EOI} .

D'après ${\it P1}$ appliqué au triangle EOI, l'angle \widehat{EOI} mesure 25°

2) Calculer la mesure de l'angle \widehat{OEJ}

Les angles \widehat{EOI} et \widehat{OEJ} sont supplémentaires donc l'angle \widehat{OEJ} mesure 58°

3) Les droites (OJ) et (OI) sont-elles perpendiculaires?

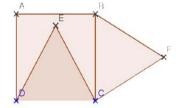


Le triangle JEO est isocèle en O , d'après P1 et légalité de mesure d'angle à la base d'un triangle isocèle alors \widehat{JOE} = 64°. \widehat{JOE} + \widehat{EOI} = 64° + 25° = 89°. L'angle \widehat{JOI} n'est pas droit, donc les droites (OJ) et (OI) ne sont pas perpendiculaires.

EXERCICE 9

Sur la figure ci-contre, le quadrilatère ABCD est un carré et les triangles DEC et BFC sont équilatéraux.

Démontrer que les points A, E et F sont alignés.



- DAE est isocèle, son angle DÂE mesure 30°, et donc les deux autres, en particulier DÊA, valent 75°.
- Les angles du triangle équilatéral AEB mesure60° en particulier AÊB.
- Le triangle EBF est rectangle isocèle en B et BÊF = 45°.

 $D\hat{E}F = D\hat{E}A + A\hat{E}B + B\hat{E}F$ et $D\hat{E}F = 75^{\circ} + 60^{\circ} + 45^{\circ} = 180^{\circ}$. L'angle DEF est plat : les points D, E et F sont alignés.

EXERCICE 10

a. ABCD est un trapèze de bases [AB] et [CD].

La perpendiculaire à (AC) passant par D coupe (AB) en I et la perpendiculaire à (AC) passant par B coupe (DC) en J. Construire la figure.

b. Démontrer que le quadrilatère IBJD est un parallélogramme.