GEOMETRIE PLANE

Cours

Ce cours rassemble des définitions et des propriétés de géométrie plane à connaître. Les propriétés sont énoncées sans démonstration. Les propriétés relatives aux transformations du plan, ainsi que le théorème de Thalès et sa réciproque, seront étudiés ultérieurement.

Le vocabulaire en rouge est à connaître. Le vocabulaire en gras reste important. Les notions en italique sont à comprendre comme des « pour aller plus loin » et ne font pas partie du programme de cycle 4.

Notations : A et B étant deux points du plan non confondus,

- (AB) désigne la droite qui passe par le point A et le point B;
- [AB] désigne le segment d'extrémités A et B;
- AB désigne la longueur du segment [AB] ;
- [AB] désigne la demi-droite d'origine A passant par B.

I. Droites parallèles et perpendiculaires

1) Définitions

- Les droites (d_1) et (d_2) sont parallèles si elles sont confondues ou si elles n'ont aucun point commun.
- Lorsque deux droites du plan ne sont pas parallèles, elles ont un unique point commun, appelé leur **point d'intersection**. On dit qu'elles sont **sécantes** en ce point.
- Deux droites sécantes sont perpendiculaires quand elles se coupent en formant un angle droit.

2) Propriétés des droites parallèles et perpendiculaires

Propriété 1 : Si deux droites sont parallèles à une même droite alors elles sont parallèles.	(d_2) (d_3) (d_3)
Propriété 2 : Si deux droites sont perpendiculaires à une même droite alors elles sont parallèles.	$(d_1) \qquad (d_2) \qquad (d_3)$
Propriété 3 : Si deux droites sont parallèles alors toute droite perpendiculaire à l'une est aussi perpendiculaire à l'autre.	

3) Constructions

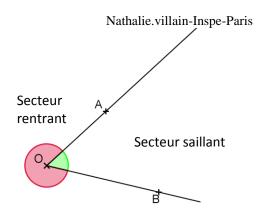
Avec des médiatrices ou des parallélogrammes (Cf. plus bas), il faudra savoir tracer :

- une droite perpendiculaire à une droite donnée passant par un point donné (sur la droite ou non) à la règle et à l'équerre, ou à la règle et au compas.
- une droite parallèle à une droite donnée passant par un point donné à la règle et à l'équerre, ou à la règle et au compas.

II. Angles

1) Définitions

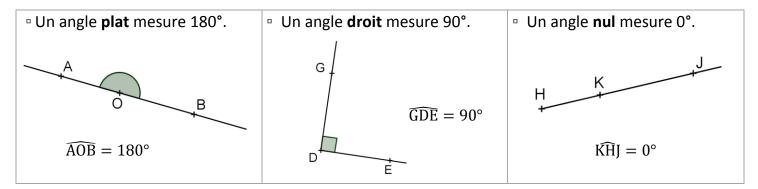
Deux demi-droites de même origine partagent le plan en deux secteurs angulaires : un secteur angulaire **saillant** et un secteur angulaire **rentrant**. Quand deux secteurs angulaires sont superposables, on dit qu'ils ont le même angle, et par un abus de langage usuel, on attribue le sommet et les côtés d'un secteur à l'angle associé à ce secteur. On dira ainsi, pour la figure ci-contre, que O est le **sommet de l'angle** \widehat{AOB} et les demi-droites [OA) et [OB) sont les **côtés de l'angle** \widehat{AOB} .



Le degré est une unité de mesure que l'on utilise pour mesurer les angles (jusqu'à la fin du collège).

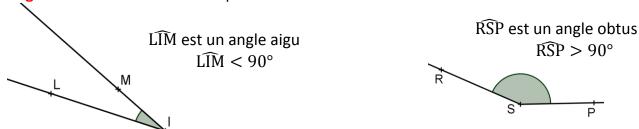
- Un angle saillant a une mesure comprise entre 0° et 180°.
- Un angle rentrant a une mesure supérieure à 180°.

Par la suite on ne considèrera que les angles saillants.

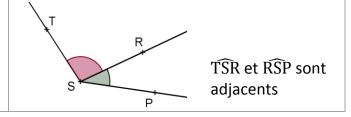


Propriété: Soit A, B et C trois points du plan. Si $\widehat{ABC}=180^\circ$ ou 0° alors les points A, B et C sont alignés. **Définitions :**

- Un angle aigu a une mesure comprise entre 0° et 90°.
- Un angle obtus a une mesure comprise entre 90° et 180°.

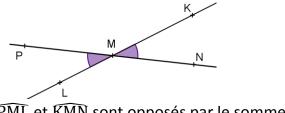


- Deux angles sont complémentaires si la somme de leurs mesures est égale à 90°.
- Deux angles sont supplémentaires si la somme de leurs mesures est égale à 180°.
- Deux angles sont adjacents si :
- ils ont le même sommet
- ils ont un côté commun
- ils sont situés de part et d'autre de ce côté commun.



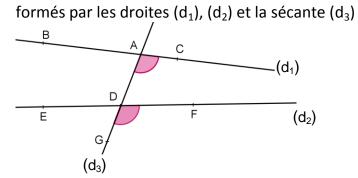
- Deux angles sont opposés par le sommet si :
- ils ont le même sommet
- leurs côtés sont dans le prolongement l'un de l'autre.

Propriété: Deux angles opposés par le sommet sont égaux.



PML et KMN sont opposés par le sommet

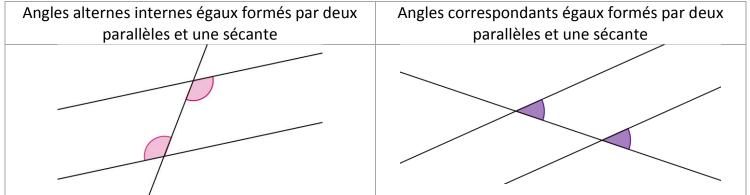
• CAD et FDG sont des angles correspondants • CAD et ADE sont des angles alternes-internes formés par les droites (d_1) , (d_2) et la sécante (d_3) (d_1) В (d_2) (d_3) (d_3)



2) Angles et parallélisme

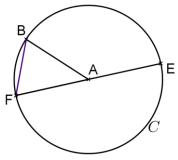
Propriété :

- Si deux angles alternes internes (ou correspondants) sont formés par deux droites parallèles et une sécante alors ils sont égaux.
- Si deux angles alternes-internes (ou correspondants), formés par deux droites (d_1) , (d_2) et une sécante (d_3) sont égaux alors les droites (d_1) et (d_2) sont parallèles.



III. Ensembles de points particuliers : cercles et médiatrices

1) Le cercle (ensemble de points situés à égale distance d'un point donné)



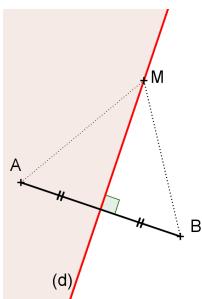
Définition: Soit A un point du plan et r un nombre positif. Le cercle de centre A et de rayon r est l'ensemble des points situés à la distance r du point A.

Un segment qui relie A centre du cercle (C) à un point B de (C) est un rayon. Un segment [FB] qui relie deux points du cercle (C) est une corde de C. Une corde [EF] qui passe par le centre du cercle est un diamètre de C.

Remarque : les mots « rayon » et « diamètre » peuvent désigner à la fois des segments et des longueurs. Dans ce cas, le rayon est la moitié du diamètre. On choisira le sens suivant le contexte.

Définition: Soit O un point du plan et r un nombre positif. Le **disque** de centre O et de rayon r est l'ensemble des points situés à une distance inférieure ou égale à r du point O.

2) La médiatrice d'un segment



Définition: La **médiatrice** d'un segment est la droite qui coupe ce segment **perpendiculairement** et en son **milieu**.

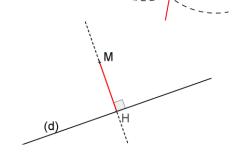
Propriété: La médiatrice d'un segment est l'ensemble des points du plan situés à égale distance des extrémités de ce segment.
(d) médiatrice du segment [AB] et M un point du plan
M ∈ (d) si et seulement si MA = MB.

Propriété : Étant donné A et B deux points distincts du plan, l'ensemble des points du plan qui sont situés plus près de A que de B est le demiplan ayant comme frontière la médiatrice de [AB] et contenant le point Δ

Méthode de construction de la médiatrice d'un segment à la règle et au compas :

à l'aide du compas on place deux points situés chacun à égale distance des deux extrémités du segment [AB] et on trace la droite passant par ces deux points.

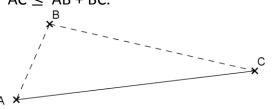
Définition: la **distance d'un point M à une droite (d)** se mesure sur la perpendiculaire à (d) passant par M ; si on nomme H le point d'intersection de la droite (d) et cette perpendiculaire alors c'est la longueur MH. H est appelé le projeté orthogonal de M sur (d).



IV. Triangles

a. Inégalité triangulaire

Pour trois points distincts A, B, C, on a $AC \leq AB + BC$.



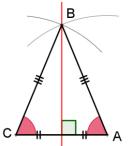
Si A, B et C sont alignés dans cet ordre alors AC = AB + BC

Réciproquement : si AB + BC = AC alors B \in [AC]

Cette propriété permet de formaliser une idée intuitive : le plus court chemin entre 2 points est la ligne droite.

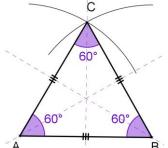
b. Triangles particuliers

Définition : Un triangle est **isocèle** s'il possède deux côtés de même longueur (au moins).



- Le sommet situé sur l'axe de symétrie s'appelle le sommet principal (ici B).
- Les angles BCA et BAC sont égaux ; on les appelle les angles à la base.

Définition: Un triangle est équilatéral s'il possède ses trois côtés de même longueur.

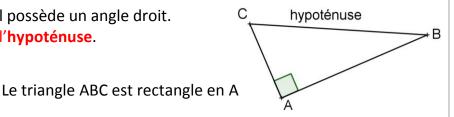


Un triangle équilatéral a trois axes de symétrie.

Chacun des 3 angles d'un triangle équilatéral mesure 60°.

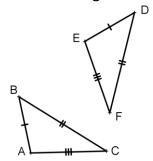
ABC est isocèle en B.

Définition: Un triangle est rectangle s'il possède un angle droit. Le côté opposé à l'angle droit s'appelle l'hypoténuse.



c. Cas d'isométrie des triangles

Définition: Deux triangles sont isométriques (ou égaux, superposables) si leurs côtés ont, deux à deux, la même longueur.



Exemple (figure ci-contre):

Si ABC et DEF sont 2 triangles tels que AB = ED, BC = FD et AC = EF, alors ils sont isométriques. Les deux triangles sont superposables (on peut les imaginer dessinés sur du calque, l'un glissant librement et pouvant être retourné) : par superposition, A correspond à E, B à D et C à F.

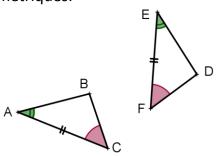
Propriété: Si deux triangles sont isométriques, leurs angles sont égaux deux à deux.

Définition : Deux triangles qui ont les mêmes angles sont semblables ou de même forme ou équiangles.

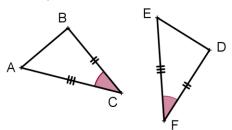
Propriété: Si deux triangles sont semblables, on passe de l'un à l'autre par un agrandissement ou une réduction. Autrement dit, les longueurs des côtés correspondants sont alors proportionnelles.

Pour démontrer que 2 triangles sont isométriques, on peut soit vérifier la définition (c'est le « 1 er cas d'isométrie »), soit utiliser l'une des deux propriétés suivantes.

Propriété (2^{ème} cas d'isométrie des triangles). Deux triangles ayant un côté de même longueur compris entre deux angles égaux sont isométriques.



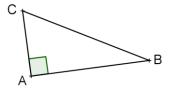
Propriété (3^{ème} cas d'isométrie des triangles). Deux triangles ayant un même angle compris entre deux côtés de même longueur sont isométriques.



d. Géométrie du triangle rectangle

1) Théorème de Pythagore

Théorème de Pythagore : Si un triangle est rectangle alors le carré de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.

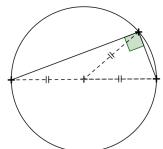


Le triangle ABC est rectangle en A donc $AB^2 + AC^2 = BC^2$.

Réciproque du théorème de Pythagore : Dans un triangle, si le carré de la longueur du plus long côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle.

Contraposée du théorème de Pythagore : Dans un triangle, si le carré de la longueur du plus long côté n'est pas égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle n'est pas rectangle.

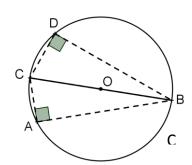
2) Triangle rectangle et cercle



Théorème: Si un triangle est rectangle alors ses trois sommets sont sur un cercle dont un diamètre est l'hypoténuse du triangle. Le centre de ce cercle est donc le milieu de l'hypoténuse.

Théorème réciproque : Si un triangle est inscrit dans un cercle et qu'un de ses côtés est un diamètre du cercle alors ce triangle est rectangle.

Si [BC] est un diamètre du cercle C et A (ou D) appartient au cercle C alors ABC est rectangle en A (et DBC en D).



3) Trigonométrie dans le triangle rectangle.

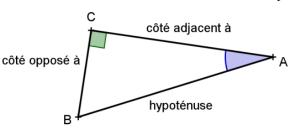
Cours

Nathalie.villain-Inspe-Paris

Dans un triangle ABC rectangle en C on

définit respectivement : le cosinus (cos), le sinus (sin)

et la tangente (tan) d'un angle aigu :



cos \widehat{BAC}	sir	BAC	tan \widehat{BAC}
=	=		=
côté adjacent		côté oppos	côté opposé à BAC
hypothénu		hypothé	,
			sin BAC
			$cos\widehat{BAC}$

e. Droites remarquables du triangle

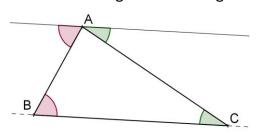
Définition	Propriété	Figure
Une médiatrice du triangle est la médiatrice de l'un des côtés du triangle.	Les 3 médiatrices d'un triangle sont concourantes en un point qui est le centre du cercle circonscrit à ce triangle (cercle passant par les 3 sommets du triangle).	A B
Dans un triangle, une hauteur est une droite qui passe par un sommet et coupe le côté opposé perpendiculairement.	Les 3 hauteurs d'un triangle sont concourantes en un point appelé <u>l'orthocentre</u> du triangle.	A C
Dans un triangle, une médiane est une droite qui passe par un sommet et coupe le côté opposé en son milieu.	Les 3 médianes d'un triangle sont concourantes en un point appelé <u>le centre de gravité</u> du triangle. Le centre de gravité est situé aux $\frac{2}{3}$ de chaque médiane en partant du sommet.	A K K C
Une bissectrice d'un triangle est la bissectrice de l'un des angles du triangle.	Les 3 bissectrices d'un triangle sont concourantes en un point qui est <u>le</u> <u>centre du cercle inscrit dans ce</u> <u>triangle</u> (cercle qui est tangent aux 3 côtés du triangle).	C

Propriété : dans un triangle isocèle, la hauteur issue du sommet principal, *la bissectrice de l'angle au sommet*, la médiatrice de la base et *la médiane relative à cette base* sont confondues.

Cette propriété s'étend au triangle équilatéral (elle est vraie dans ce cas pour chacun des sommets et côtés associés).

f. Somme des angles d'un triangle

Propriété: La somme des trois angles d'un triangle est égale à 180°.



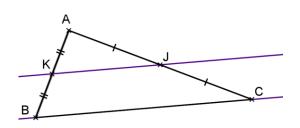
$$\widehat{ABC} + \widehat{ACB} + \widehat{BAC} = 180^{\circ}$$

Propriété : Si un triangle est isocèle alors ses angles à la base sont égaux. **Réciproquement**, si un triangle a deux angles égaux alors il est isocèle.

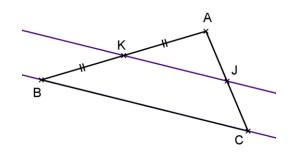
Propriété : Si un triangle est équilatéral alors chacun de ses trois angles mesure 60°. **Réciproquement**, un triangle dont les 3 angles mesurent 60° est équilatéral (en fait, deux suffisent).

g. Théorème des milieux

- Propriété : Dans un triangle si une droite passe par les milieux de 2 côtés alors elle est parallèle au 3ème côté.
- De plus, le segment qui joint les milieux de deux côtés a pour longueur la moitié de la longueur du 3^{ème} côté :



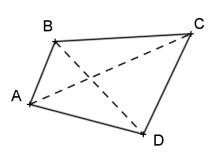
 Réciproque : Dans un triangle si une droite passe par le milieu d'un côté et qu'elle est parallèle à un autre côté alors elle coupe le 3^{ème} côté en son milieu.



V. Quadrilatères

a. Vocabulaire

Définitions : un quadrilatère est un polygone qui a 4 côtés.



Le quadrilatère ABCD possède 4 sommets : les points A, B, C, D.

[AB] et [BC] sont 2 côtés consécutifs ou adjacents.

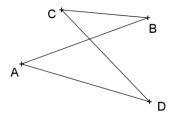
[AB] et [CD] sont 2 côtés opposés

[AC] et [BD] sont les diagonales

Remarque: Pour nommer un polygone, on tourne autour. Donc il y a 8 possibilités pour ce quadrilatère (puisqu'il y a 4 sommets et 2 sens): ABCD, ADCB, BCDA, BADC etc... mais on ne « traverse » pas la figure (ABDC impossible).

Définitions :

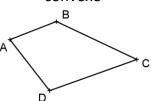
- On dit qu'un quadrilatère est **croisé** quand deux de ses côtés opposés sont sécants.



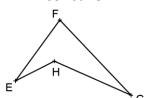
ABCD est un quadrilatère croisé

On dit qu'un quadrilatère est **convexe** quand tous ses sommets sont dans le même demi-plan par rapport à n'importe quelle droite portée par un des côtés du quadrilatère. Un quadrilatère qui n'est pas convexe est **concave**.

ABCD quadrilatère convexe

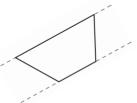


EFGH quadrilatère concave

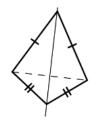


b. Quadrilatères particuliersDéfinitions :

 Un trapèze est un quadrilatère qui a deux côtés parallèles.



 Un cerf-volant est un quadrilatère qui a 2 paires de côtés consécutifs de même longueur.



	définition	diagonales	côtés	angles
Parallélogramme	Quadrilatère qui a ses côtés parallèles 2 à 2.	□ Se coupent en leur milieu	 Côtés opposés parallèles et de même longueur 	 Angles opposés de même mesure Angles consécutifs supplémentaires
Losange	Quadrilatère qui a 4 côtés de même longueur.	Se coupent en leur milieuSont perpendiculaires	 Côtés opposés parallèles 4 côtés de même longueur 	 Angles opposés de même mesure Angles consécutifs supplémentaires
Rectangle	Quadrilatère qui a 4 angles droits.	Se coupent en leur milieuOnt la même longueur	 Côtés opposés parallèles et de même longueur Côtés consécutifs perpendiculaires 	 4 angles droits
Carré	Quadrilatère qui a 4 côtés de même longueur et 4 angles droits.	 Se coupent en leur milieu Sont perpendiculaires Ont la même longueur 	 Côtés opposés parallèles 4 côtés de même longueur Côtés consécutifs perpendiculaires 	 4 angles droits