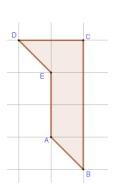

M1 groupe E MATHS TICE 4

1ère partie: GeoGebra et transformations

EXERCICE 1

Informatique uniquement.

EXERCICE 2

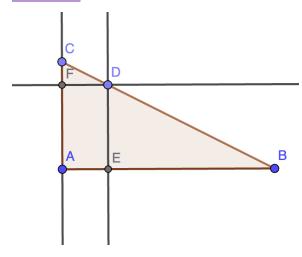

EXERCICE 3

Le but de l'exercice est de construire un pavage à partir du motif élémentaire ci-contre.

- 1. Reproduire ce motif élémentaire à l'aide de Géogebra.
- 2. Créer **un motif de base à** partir de ce motif élémentaire. Préciser la ou les transformations utilisées.

On peut utiliser une symétrie axiale, une symétrie centrale ou encore une rotation.

3. Créer **un pavage du plan** à partir de votre motif de base en précisant les deux translations utilisées. Il y a deux translations à utiliser.



EXERCICE 4

	Points O, A et A'	longueurs OA et OA'	longueurs AB et A'B'	angles du polygone A'B'C'D' comparés à ceux de ABCD
k = 3	alignés	OA' = 3 OA	A'B' = 3 AB	les mêmes
k = -2	alignés	OA' = 2 OA	A'B' = 2 AB	les mêmes
k = - 0,5	alignés	OA' = 0,5 OA	A'B' = 0,5 AB	les mêmes
k = 0,5	alignés	OA' = 0,5 OA	A'B' = 0,5 AB	les mêmes

Dans le cas où k = -1, quelle transformation usuelle retrouve-t-on? Une symétrie centrale.

EXERCICE 5

Par construction, AEDF est un quadrilatère ayant trois angles droits, Donc AEDF est un rectangle.

Or, les diagonales d'un rectangle sont de même longueur,

donc : EF = AD.

Dire que la longueur EF est minimale est donc équivalent à dire que la longueur AD est minimale c'est-à-dire que (AD) est perpendiculaire à (BC).

Pour démontrer cette dernière équivalence, on peut utiliser le théorème de Pythagore et notamment le fait que quelque soit le point M sur (BC) distinct de D, alors AMD sera un triangle rectangle d'hypoténuse [AM], d'où : AM>AD.

2^{ème} partie :Tableur

EXERCICE 6 (d'après un exercice de l'Académie de Lille)

Voici une série de données :

17	8	48	15	8	4	22
12	24	54	21	40	32	45

1. a. Sans tableur, calculer la moyenne, la médiane et l'étendue de cette série de données.

Moyenne :
$$\frac{17+8+48+15+8+4+22+12+24+54+21+40+32+45}{14} = 25$$
.

Médiane : il faut ordonner les valeurs 4 ; 8 ; 8 ; 12 ; 15 ; 17 ; 21 ; 22 ; 24 ; 32 ;40 ; 45 ; 48 ; 54. La médiane est donc à égale à
$$\frac{21+22}{2}=21,5$$
.

Étendue :
$$45 - 17 = 28$$
.

b. Saisir ces données dans une feuille de calcul en les triant dans l'ordre croissant et vérifier avec le tableur vos réponses et noter les formules utilisées.

	Α	В	С	D	E	F	G	Н
1	4		étendue:	50	=MAX(A1:A1	4)-MIN(A1:A14)		
2	8							
3	8		moyenne:	25	=MOYENNE(A	A1:A14)	=SOMME(A1:A	14)/14
4	12							
5	15		médiane:	21,5	=MEDIANE(A	1:A14)		
6	17							
7	21							
8	22							
9	24							
10	32							
11	40							
12	45							
13	48							
14	54							
15								

- 1. a. Peut-on modifier une seule donnée sans changer la moyenne ? Non, changer une seule donnée change la moyenne.
 - b. Peut-on modifier une seule donnée sans changer la médiane ? Si oui donner un exemple. Oui, on peut changer n'importe quelle valeur qui « n'est pas centrale » tant qu'elle reste dans « la même moitié ».
 - c. Peut-on modifier une seule donnée sans changer l'étendue ? Si oui donner un exemple. Oui, on peut changer n'importe quelle donnée tant qu'elle n'est ni la minimale, ni la maximale.
 - d. Modifier deux des données sans changer la moyenne. Quelle règle faut-il respecter ? Il faut augmenter l'une des valeurs d'autant qu'on diminue une autre.
 - e. Supprimer la plus petite et la plus grande donnée. Quel effet cela a-t-il sur la moyenne, la médiane et l'étendue ?

Cela ne change pas la médiane, mais cela modifie nécessairement l'étendue et souvent cela modifie la moyenne.

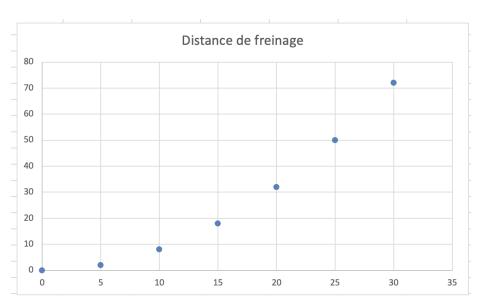
EXERCICE 7

	А	В	С	D	Е	F	G	Н
1	Nombre de tours effectués	310	320	330	340	350	360	
2	effectifs	4	4	5	7	3	2	
3	effectifs cumulés	4	8	13	20	23	25	
4			=B3+C2					
5								
6								
7		médiane:	13ème valeur	330				
8		étendue:	50	=360-310				
9		moyenne:	332,8	=(310*4+320*	4+330*5+340*	7+350*3+360*	2)/25	
10		c'est une moye	pyenne pondérée: il faut multiplier les valeurs par l'effectif					
11								
12	FAUX	Nb de coureur	s à moins de 330 t	ours	: 8 sur 25 soir 3	32%	=8/25*100	
13	VRAI	Nb de coureur	coureurs à au moins 350 tours: : 5 s		: 5 sur 25 soit 2	20%	=5/25*100	
14								

3. Vrai-Faux : justifier les réponses

- a) 33% des coureurs ont effectués moins de 330 tours. FAUX, car 33% des coureurs représentent $\frac{33}{100} \times 25 = 8,25$ coureurs. Or il n'y a que 8 coureurs qui ont effectué moins de 330 tours.
- b) 20% des coureurs ont effectués au moins 350 tours. VRAI, car 20% des coureurs représentent $\frac{20}{100} \times 25 = 5$ coureurs. Or il y a exactement 5 coureurs qui ont effectué au moins 350 tours, c'est-à-dire au minimum 350 tours.

Partie A


1.

3

B2	B2							
	А	В	С	D	Е	F	G	Н
1	vitesse (m/s)	0	5	10	15	20	25	30
2	Distance de freinage	0	2	8	18	32	50	72
3	Coefficient k	0,08						
1								

2 Calculer la distance de freinage sur route sèche pour une vitesse de 72 km/h.

72 km/h = 72000 m/h =
$$\frac{72000}{3600}$$
 m/s = 20 m/s
0,08 × 20² = 32 m

4. A partir de quelle vitesse (arrondie à l'unité, en Km/h), la distance de freinage sur route sèche est supérieure à 45 mètres ? Justifier votre réponse.

On cherche v telle que $0.08 \times v^2 > 45$, donc $v^2 > \frac{45}{0.08}$ c'est-à-dire $v^2 > 562.5$ donc v > 24 arrondi à l'unité.

EXERCICE 9 (DNB, Métropole–La Réunion–Antilles-Guyane, 2017)

a. Combien d'employés sont en situation de surpoids ou d'obésité dans cette entreprise ?

Il y a 3 employés en surpoids ou d'obésité dans cette entreprise.

b. Laquelle de ces formules a-t-on écrite dans la cellule B3, puis recopiée à droite, pour calculer l'IMC ? Recopier la formule correcte sur la copie.

$$= 72/1,69^2$$
 $= B1/(B2*B2)$ $= B2/(B1*B1)$ $= $B2/($B1*$B1)$

3ème partie: Scratch

EXERCICE 10: Moyenne simple

1- Calculs préliminaires – calculer la moyenne des nombres suivants (calculs obligatoires) :

12 et 15
$$\frac{12+15}{2} = 13,5$$
12, 17 et 15
$$\frac{12+15+17}{3} \approx 14,7$$

2- Parmi les programmes suivants, le(s)quel(s) permet(tent) de calculer la moyenne de 2 nombres ? Expliquer pourquoi.

```
quand cliqué

demander Quel est le premier nombre ? et attendre

demander Quel est le deuxième nombre ? et attendre

mettre moyenne à réponse + réponse / 2

dire regroupe La moyenne est : moyenne
```

Il ne permet pas de calculer la moyenne de deux nombres, car la réponse donnée au premier nombre est "écrasée" par la réponse donnée au deuxième nombre.

```
quand cliqué

demander Quel est le premier nombre ? et attendre

mettre nombre 1 v à réponse

demander Quel est le deuxième nombre ? et attendre

mettre nombre 2 v à réponse

mettre moyenne v à nombre 1 + nombre 2 / 2

dire regroupe La moyenne est : moyenne
```

Il permet de calculer la moyenne de deux nombres, car dans le dernier calcul c'est bien la somme nombre 1 + nombre 2 qui est divisée par 2.

```
quand cliqué

demander Quel est le premier nombre ? et attendre

mettre nombre 1 v à réponse

demander Quel est le deuxième nombre ? et attendre

ajouter à nombre 1 v réponse

mettre moyenne v à nombre 1 / 2

dire regroupe La moyenne est : moyenne
```

Il permet de calculer la moyenne de deux nombres, en effet, le nombre 1 prend la première valeur, puis on ajoute la deuxième valeur. Donc le nombre 1 prend comme valeur la somme des deux nombres, puis on divise par 2.

```
quand cliqué

demander Quel est le premier nombre ? et attendre

mettre nombre 1 * à réponse

demander Quel est le deuxième nombre ? et attendre

mettre nombre 2 * à réponse

mettre moyenne * à nombre 1 + nombre 2 / 2

dire regroupe La moyenne est : moyenne
```

Il ne permet pas de calculer la moyenne de deux nombres, car dans le dernier calcul il n'y a que le nombre 2 qui est divisé par 2.

3- Créer un programme permettant de calculer la moyenne de 3 nombres.

EXERCICE 11 Moyenne pondérée

1- Calcul préliminaire – calculer la moyenne des nombres suivants (calculs obligatoires) :

nombre	12	17	15
coefficient	2	1	5

$$\frac{12 \times 2 + 17 \times 1 + 15 \times 5}{8} = 14,5$$

On veut calculer la moyenne de 3 nombres avec ces mêmes coefficients grâce à Scratch.

2- Créer un programme qui calcule la moyenne de 2 nombres de coefficients respectifs 4 et 6 :

EXERCICE 12: calcul littéral

Voici un programme de calcul

- o Choisir un nombre
- o Prendre la moitié du nombre
- o Ajouter le triple du nombre choisi au départ
- Multiplier par (-4) le résultat obtenu
- 1. Quel est le résultat du programme de calcul si le nombre choisi au départ est -3 ? 10 ?

2. Remettre les différents blocs dans le bon ordre pour écrire le script correspondant au programme précédent

```
quand  choisir un nombre et attendre

mettre nombre choisi au départ  à réponse

mettre resultat  à nombre choisi au départ / 2

mettre resultat  à resultat  + 3 * nombre choisi au départ

mettre resultat  à resultat  + 4

dire resultat  pendant 6 secondes
```

EXERCICE 13

Pour chaque programme de calcul, écris l'expression qui donne le résultat final si on choisit le nombre *x* comme nombre de départ.

